Product Update Memo

SENSORS & CONTROLS PRODUCTS

June, 2006

Bourns Manufacturers Representatives Corporate Distributor Product Managers Americas Sales Team Asia Sales Team Europe Sales Team

Model EN Optical Encoder Series Material Change

Sensors and Controls Division will be changing the plastic material used in molding the LED trimming rotor of the Model EN Optical Encoder. A change will be made from Fortron 1140L4 to Thermocomp[®] OF-1008 due to phase out of Fortron material at our current supplier and lack of availability from other suppliers.

Thermocomp[®] material is equivalent to the Fortron material and has been qualified for use in the standard EN Series product. Please reference the attached photo identifying the rotor. There is no change in form, fit or function.

The transition to Thermocomp[®] material is currently in progress for standard catalog part numbers. Thermocomp[®] is a UL rated (V-0) engineering material. Attached you will find data sheets for both Fortron and Thermocomp[®] plastics for your review. The UL certification for Thermocomp is QMFZ2.E45195 and is available on the UL website at www.ul.com

Thermocomp[®] *is a registered trademark of General Electric Custom Engineered Products Division.*

FORTRON[®] Grade Catalog

FORTRON®

Polyphenylene Sulfide (PPS)

Grade Compositions

POLYPLASTICS CO., LTD.

FORTRON Grade Compositions

FORTRON[®] completely changed the industry's prior view of polyphenylene sulfide (PPS) as being a brittle material. FORTRON[®] is firmly establishing is base as a new type of PPS resin that overcomes this brittleness. This is because while traditional PPS has a partially cross linked molecular structure, FORTRON[®] possesses a non-cross linked linear structure. Needless

to say, FORTRON® is superior in its heat resistance, flame retardance, and chemical resistance, and it also contains only very low levels

of ionic impurities and exhibits superior solderability.

These properties are seeing growth for FORTRON® continue centered on demanding electronic component applications.

Mechanical strength is exceedingly high, with flexural strength in particular exhibiting a high value, excellent elastic recovery is also possessed.
Elongation and impact strength are high, and brittleness, a major drawback of traditional PPS, has been improved significantly.

Can withstand immersion in 260°C solder bath for 10 s, making the resin more than able to cope with electronic component surface mount technologies.
Ionic impurities are low, and application is possible in applications where strict electrical properties are demanded.
Wold strength is high, and superior accordary processes bility (cargos insertion, etc.) is exhibited.

Weld strength is high, and superior secondary processability (screws, insertion, etc.) is exhibited.

ltem		Unit	Testing Method	Unreinforced	Glass fibers filled							Glass fibers and Inorganic fillers filled		
				0220A9	1130A64	1140A64	1150A64	1140A7	1140A6	1130A1	1140A1	6165A4	6165A6	6165A7
				Toughness	Standard, Low flash		Low warp, Low flash	Ultrahigh flow, Low flash	High strength	High toughness		Dimensionally precise, Standard, Low flash		Dimensionally precise, Low flash
				Unfilled	GF30%	GF40%	GF50%	GF40%	GF40%	GF30%	GF40%	GF/M65%	GF/M65%	GF/M60%
Density		g/cm³	ISO 1183	1.35	1.57	1.66	1.75	1.66	1.66	1.57	1.66	1.98	1.98	1.89
Water absorption (23°C, 24hrs)		%	ISO 62	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Melt viscosity (310°C, 1,000/sec)		Pa∙s	ISO11443	500	240	240	260	160	260	350	380	400	300	300
Mold Shrinkage	Flow direction	%		1.1	0.4	0.3	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.2
(80×80×2mmt)) Transverse direction	%		1.4	0.7	0.7	0.6	0.7	0.7	0.6	0.7	0.5	0.5	0.6
Stress at	yield	MPa	ISO527-1,2	90	170	200	145	170	210	170	185	130	130	155
Strain at break		%	ISO527-1,2	15*	1.9	1.8	1.2	1.4	1.9	2.0	1.8	1.1	1.1	1.2
Flexural s	Flexural strength		ISO 178	140	230	280	215	240	290	245	260	190	190	220
Flexural r	Flexural modulus		ISO 178	3,800	10,500	14,000	16,000	14,000	14,000	10,000	13,000	18,300	18,300	17,300
Charpy notched	Charpy notched impact strength		ISO179/1eA	3.3	7.0	9.5	5.0	9.0	11.0	10.0	10.0	4.5	4.5	5.5
Temperature of deflection under load (1.8MPa)		°C	ISO 75-1	100	265	270	270	275	270	260	265	270	270	270
Coefficient of	Flow direction	×10 ⁻⁵ /°C	-ISO11359-2	4	2	2	2	2	2	2	2	1	1	1
expansion	Transverse direction	×10 ^{-₅} /°C		6	4	4	3	4	4	4	4	2	2	3
Flammab	Flammability		UL94	V-0	V-0	V-0	V-0	V-0	V-0	V-0	V-0	V-0	V-0	V-0
Dielectric co	Dielectric constant (1KHz)		IEC 60250	3.6	4.2	4.5	4.6	4.3	4.2	4.0	4.6	5.8	5.8	5.3
Dielectric constant (1MHz)			IEC 60250	3.6	4.2	4.5	4.7	4.3	4.2	4.0	4.6	5.8	5.8	5.4
Dielectric loss tangent (1KHz)			IEC 60250	0.0004	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.002	0.001
Dielectric loss tangent (1MHz)			IEC 60250	0.001	0.002	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Electric strength (Short-time test: 3mm)		kV/mm	IEC 60243-1	19	15	16	16	15	16	16	15	14	14	14
Volume resistivity		Ω·cm	IEC 60093	2×10 ¹⁶	8×10 ¹⁵	4×10 ¹⁶	2×10 ¹⁶	4×10 ¹⁵	4×10 ¹⁶	3×10 ¹⁶	1×10 ¹⁶	8×10 ¹⁵	8×10 ¹⁵	2×10 ¹⁵
Surface resistivity		Ω	IEC 60093	7×10 ¹⁶	8×10 ¹⁶	3×1017	3×1017	1×10 ¹⁵	3×1017	2×1017	8×10 ¹⁶	9×10 ¹⁵	9×10 ¹⁵	8×10 ¹⁶
Tracking resistance		V	IEC 60112	125	125	150	125	125	150	150	150	200	200	175

*Nominal strain at break

•All figures in the table are the typical values of the material and not the minimum values of the material specifications.

• For qualified values of UL (Underwriters Laboratories Inc.) refer to the yellow card (File No.E 109088) issued by UL.

**Asterisked grades come under Item 5 (18) of Annex 1 of the Export Trade Control Order

on the basis of the Foreign Exchange and Foreign Trade Law of Japan.

All other grades come under Item 16 of Annex 1 of the Export Trade Control Order of Japan.

Due to ongoing research and development, the data contained in this catalog is subject to change without notice. The latest data can be found on our Website. Please download from the following address. http://www.polyplastics.com/en/product/

ltem		Glass fit	pers and Ir	norganic fi	llers filled	Special								
		6465A62	6660A42	6565A6	6565A7	0220U9	1130T6	6150T6	6935A4	6345A4	3130A1	**2130A1	**7140A4	7340A4
		Low warp, Higher gloss, Cosmetic	Enhanced cosmetic, Low anisotropy	Low temperature mold, Adhesion-enhanced		High impact			Low wear			Conductive, Low wear		Conductive
		GF/M60%	GF/M60%	GF/M65%	GF/M60%	Unfilled	GF30%	GF/M50%	GF/M20% PTFE	GF30% PTFE	Whiskers 30%	CF30%	CF30% PTFE	GF/M40%
Density		1.87	1.86	1.96	1.89	1.31	1.52	1.71	1.59	1.68	1.62	1.44	1.49	1.69
Water absorption (23°C, 24hrs)		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.01	0.03
Melt viscosity (310°C, 1,000/sec)		200	320	280	200	500	400	240	260	220	200	380	280	340
Mold Shrinkage (80×80×2mmt)	Flow direction	0.4	0.7	0.3	0.3	1.1	0.3	0.2	0.6	0.3	0.4	0.1	0.1	0.3
	Transverse direction	0.7	0.7	0.5	0.5	1.6	0.7	0.6	0.7	0.7	1.0	0.6	0.5	0.7
Stress at yield		140	90	125	130	75	155	155	120	155	125	215	180	135
Strain at break		1.5	1.1	1.0	1.1	21*	2.3	1.7	2.1	1.8	1.7	1.3	1.0	1.5
Flexural strength		215	140	165	180	120	220	205	175	215	230	300	270	195
Flexural modulus		14,400	13,200	18,200	17,800	3,400	8,800	11,200	7,500	10,300	11,500	21.200	22,800	12,000
Charpy notched impact strength		6.0	2.8	4.5	5.0	7.0	12.0	8.0	4.5	8.5	2.5	5.5	4.5	5.0
Temperature of deflection under load (1.8MPa)		270	260	275	275	95	255	265	250	265	210	265	270	265
Coefficient of	Flow direction	2	2	1	1	4	2	2	2	2	2	1	1	2
expansion	Transverse direction	3	2	3	3	6	4	4	5	4	4	4	4	4
Flammabi	ility	V-0	V-0	V-0	V-0	_	V-2	_	V-0	V-0	V-0 (3mm)	V-0	V-0	V-1
Dielectric co	nstant (1KHz)	4.9	5.3	5.4	4.9	3.5	3.9	4.5	3.7	4.2	7.6	_	_	_
Dielectric constant (1MHz)		4.9	5.2	5.4	4.7	3.5	3.9	4.4	3.7	4.2	6.4	_	_	_
Dielectric loss tangent (1KHz)		0.002	0.006	0.013	0.014	0.001	0.003	0.004	0.004	0.001	0.021	_	_	_
Dielectric loss tangent (1MHz)		0.001	0.004	0.005	0.006	0.002	0.004	0.005	0.002	0.002	0.096	_	_	_
Electric strength (Short-time test: 3mm)		20	13	19	14	18	18	16	18	20	9	_	_	_
Volume resistivity		3×10 ¹⁶	5×10 ¹⁶	2×10 ¹⁶	7×10 ¹⁵	2×10 ¹⁶	8×10 ¹⁵	7×10 ¹⁵	1×10 ¹⁶	4×10 ¹⁵	9×10 ¹⁵	2×10 ³	8×10 ²	1×10 ²
Surface resistivity		1×10 ¹⁶	1×10 ¹⁶	2×10 ¹⁶	1×10 ¹⁷	8×10 ¹⁵	4×10 ¹⁶	1×1017	1×10 ¹⁷	8×10 ¹⁵	1×10 ¹⁶	2×10 ²	2×10 ²	9×10
Tracking resistance		125	175	225	175	125	125	150	125	125	150	_	_	_

*Nominal strain at break

•All figures in the table are the typical values of the material and not the minimum values of the material specifications. •For qualified values of UL (Underwriters Laboratories Inc.) refer to the yellow card (File No.E 109088) issued by UL.

**Asterisked grades come under Item 5 (18) of Annex 1 of the Export Trade Control Order on the basis of the Foreign Exchange and Foreign Trade Law of Japan.
All other grades come under Item 16 of Annex 1 of the Export Trade Control Order of Japan.

Due to ongoing research and development, the data contained in this catalog is subject to change without notice. The latest data can be found on our Website. Please download from the following address. http://www.polyplastics.com/en/product/

Polyplastics

NOTES TO USERS

- All property values shown in this brochure are the typical values obtained under varying conditions prescribed by applicable standards and test methods.
- This brochure has been prepared based on our own experiences and laboratory test data, and therefore all data shown here are not always applicable to parts used under different conditions. We do not guarantee that these data are directly applicable to the application conditions of users and we ask each user to make his own decision on the application.
- It is the users' responsibility to investigate patent rights, service life and potentiality of applications introduced in this brochure.
 Materials we supply are not intended for the implant applications in the medical and dental fields, and therefore are not recommended for such uses.
- For all works done properly, it is advised to refer to the appropriate "**Technical Catalog**" for specific material processing.
- For safe handling of materials we supply, it is advised to refer to the Material Safety Data Sheet "**MSDS**" of the proper material.
- This brochure is edited based on reference literatures, information and data currently available to us. So the contents of this brochure are subject to change without notice due to new data.
- Please contact our office for any questions about products we supply, descriptive literatures or any description in this brochure.
- * "FORTRON®" is a registered trademark of Kureha Chemical Industry Co., Ltd. in Japan and other countries, and is a trademark used by Polyplastics Co.,Ltd. with the owner's consent.

POLYPLASTICS CO., LTD.

JR Shinagawa East Bldg., 18-1, Konan 2-chome, Minato-ku, Tokyo, 108-8280 Japan Tel: +81-3-6711-8610 Fax: +81-3-6711-8618

Affiliates

Polyplastics Asia Pacific Sdn. Bhd. (Kuala Lumpur) Polyplastics Asia Pacific Singapore Pte. Ltd. (Singapore) Polyplastics Marketing (T) Ltd. (Bangkok) Polyplastics China Ltd. (Hong Kong) Polyplastics Trading (Shanghai) Ltd. (Shanghai) Polyplastics (Shanghai) Ltd. (Shanghai) Polyplastics Taiwan Co., Ltd. (Taipei) PTM Engineering Plastics (Nantong) Co., Ltd. (Nantong)

This information is intended only as a guide for use at your discretion and risk. NOT INTENDED FOR SPECIFICATION PURPOSES. We cannot guarantee favorable results and assume no liability in connection with its use of the use of the products described. None of this information is to be taken as a license to operate under, or recommendation to infringe, any patents. NOTE: FOR PRODUCTS WHOSE MATERIAL STATUS IS LISTED AS "PROMSIONAL," THE PROPERTIE SHOWN ARE ESTIMATED THROUGH INTERPOLATION FROM DATAGENERATED FOR SIMILAR PRODUCTS.

Thursday

Thermocomp® OF-1008

LNP Engineering Plastics Inc. - Polyphenylene Sulfide

Actions		
ISO Data Sheet		
Product Characteristics		
Material Status	Commercial: Active	
Availability	North America	
Test Standards Available	ASTM	
Filler/Reinforcement	Glass fiber reinforcement	
Forms	Pellets	
Processing Method	Injection Molding	
Droport	ion 1	
Propert	IES ∸ Nominal Values (English)	Test Method
Density -Specific Gravity (Method A)	1 70 sp. gr 23/23℃	ASTM D792
Mold Shrink Linear-Flow		
Mold Shrink, Linear-Trans	0.010 in/in	ASTM D955
	0.010 10/10/11	//01/11/2000
Mechanical	Nominal Values (English)	Test Method
Tensile Strength @ Break	23300 psi	ASTM D638
Tensile Elongation @ Brk	1.5 %	ASTM D638
Flexural Modulus	2060000 psi	ASTM D790
Flexural Strength	34000 psi	ASTM D790
Coef. of Friction		ASTM D1894
(vs. Steel - Dynamic)	0.41	
(vs. Steel - Static)	0.50	
Wear Factor (10^-10) (40 psi, 50 ft/min)	373 in^5-min/ft-lb-h	
Impact	Nominal Values (English)	Test Method
Notched Izod Impact (0.125 in)	1.80 ft-lb/in	ASTM D256
Unnotched Izod Impact (0.125 in)	9.82 ft-lb/in	ASTM D256
Thermal	Nominal Values (English)	Test Method
DTUL @264psi - Unannealed	508 °F	ASTM D648
Additional Properties		
The values displayed above as Coef. of Friction and Wea	ar Factor were tested in accordance v	vith LNP WI-0687.
COEFFICIENT OF FRICTION vs. Steel, Dynamic @ 40 p	osi, 50 ft/min, LNP WI-0687: 0.41	
COEFFICIENT OF FRICTION vs. Steel, Static @ 40 psi,	LNP WI-0687: 0.5	
WEAR FACTOR @ 40 psi, 50 ft/min, LNP WI-0687: 373	10^-10 in^5-min/ft-lb-hr	
Brooosing Ir	oformation	
Injection Molding Parameters	Nominal Values (English)	Test Method
Drving Temperature	250 to 300 °F	
Drving Time	4.0 hr	
Processing (Melt) Temp	600 to 610 °F	

Notes

275 to 325 °F

25.0 to 50.0 psi

¹ Typical properties; not to be construed as specifications.

Mold Temperature Back Pressure Copyright ©, 2004 IDES - One Source. Plastics Data.

This information is intended only as a guide for use at your discretion and risk. NOT INTENDED FOR SPECIFICATION PURPOSES. We cannot guarantee favorable results and assume no liability in connection with its use or the use of the products described. None of this information is to be taken as a license to operate under, or recommendation to infringe, any patents. NOTE: FOR PRODUCTS WHOSE MATERIAL STATUS IS LISTED AS "PROVISIONAL," THE PROPERTIES SHOWN ARE ESTIMATED THROUGH INTERPOLATION FROM DATA GENERATED FOR SIMILAR PRODUCTS.