

- Sensitive Gate Triacs
- 4 A RMS
- Glass Passivated Wafer
- 400 V to 700 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	TIC206D		400	
Repetitive peak off-state voltage (see Note 1)	TIC206M	V _{DRM}	600	V
	TIC206S		700	
Full-cycle RMS on-state current at (or below) 85°C case temperature (see Note	T(RMS)	4	Α	
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature	I _{TSM}	25	Α	
Peak gate current	I _{GM}	±0.2	Α	
Peak gate power dissipation at (or below) 85°C case temperature (pulse width ≤	P_{GM}	1.3	W	
Average gate power dissipation at (or below) 85°C case temperature (see Note	P _{G(AV)}	0.3	W	
Operating case temperature range	T _C	-40 to +110	°C	
Storage temperature range	T _{stg}	-40 to +125	°C	
Lead temperature 1.6 mm from case for 10 seconds	T _L	230	°C	

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 160 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS						TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V_D = rated V_{DRM}	I _G = 0	T _C = 110°C			±1	mA
I _{GT}	Gate trigger current	$\begin{aligned} &V_{supply} = +12 \text{ V}\dagger\\ &V_{supply} = +12 \text{ V}\dagger\\ &V_{supply} = +12 \text{ V}\dagger\\ &V_{supply} = -12 \text{ V}\dagger\end{aligned}$	$R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$	$t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$		0.9 -2.2 -1.8 2.4	5 -5 -5 10	mA

[†] All voltages are with respect to Main Terminal 1.

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

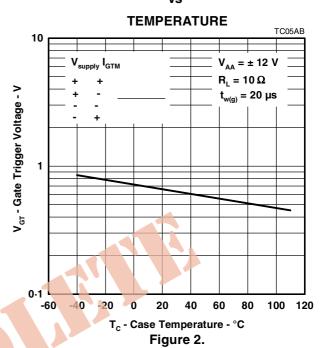
	PARAMETER	TEST CONDITIONS				TYP	MAX	UNIT
		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.7	2	
V.	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.7	-2	v
V _{GT}	voltage	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$	-0.7	-2	v	
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		0.7	2	
V _T	On-state voltage	I _T = ±4.2 A	$I_G = 50 \text{ mA}$	(see Note 5)		±1.4	±2.2	V
	Holding current	$V_{\text{supply}} = +12 \text{ V}\dagger$	I _G = 0	Init' I _{TM} = 100 mA		1.5	15	mA
Iн	riolaling current	$V_{\text{supply}} = -12 \text{ V}\dagger$	$I_G = 0$	Init' $I_{TM} = -100 \text{ mA}$		-1.3	-15	шА
I.	Latching current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	(see Note 6)				30	mA
"L	Latering current	$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	(300 14010 0)				-30	ША
dv/dt	Critical rate of rise of	V _{DRM} = Rated V _{DRM}	L = 0	T _C = 110°C		±20		V/µs
uv/ut	off-state voltage	VDRM - Hated VDRM	IG = 0	1C = 110 O		±20		ν/μ5
dv/dt _(c)	Critical rise of	V _{DRM} = Rated V _{DRM}	Ι - +42 Δ	T _C = 85°C	±1	±3		V/µs
uv/ut(c)	commutation voltage	VDRM - Hateu VDRM	TRM - ±4.2 A	1C = 00 C	H	±S		V/μS

[†] All voltages are with respect to Main Terminal 1.

thermal characteristics

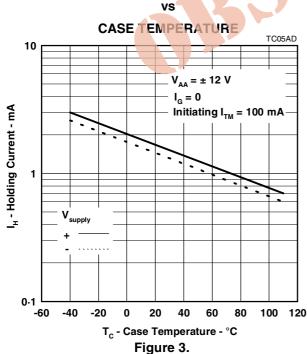
PARAMETER					MIN	TYP	MAX	UNIT	
$R_{\theta JC}$	Junction to case thermal resistance		?	Z				7.8	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance							62.5	°C/W

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

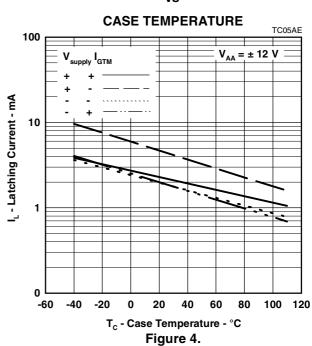

^{6.} The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$.

TYPICAL CHARACTERISTICS

GATE TRIGGER CURRENT


TEMPERATURE TC05AA 100 $V_{\Lambda\Lambda} = \pm 12 \text{ V}$ supply I_{GTM} $R_L = 10 \Omega$ t_{w(g)} = 20 μs l_{gτ} - Gate Trigger Current - mA 10 0.1 -60 -40 -20 20 40 60 80 100 120 T_c - Case Temperature - °C

GATE TRIGGER VOLTAGE



HOLDING CURRENT

Figure 1.

LATCHING CURRENT vs

