
BOURNS®

- Designed for Complementary Use with the BD249 Series
- 125 W at 25°C Case Temperature
- 25 A Continuous Collector Current
- 40 A Peak Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.

MDTRAAA

1

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BD250		-55		
Collector-emitter voltage ($R_{BF} = 100 \Omega$)	BD250A	N.	-70	V	
Collector-entitler voltage (n _{BE} = 100 sz)	BD250B	VCER	-90	V	
	BD250C		-115		
	BD250		-45		
Collector-emitter voltage (I _C = -30 mA)	BD250A	V	-60	V	
	BD250B	V _{CEO}	-80		
	BD250C		-100		
Emitter-base voltage		V _{EBO}	-5	V	
Continuous collector current		I _C	-25	Α	
Peak collector current (see Note 1)	I _{CM}	-40	Α		
Continuous base current	I _B	-5	Α		
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P_{tot}	125	W		
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3	P_{tot}	3	W		
Unclamped inductive load energy (see Note 4)		½Ll _C ²	90	mJ	
Operating junction temperature range		T _j	-65 to +150	°C	
Storage temperature range		T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds	T _L	250	°C		

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

- 2. Derate linearly to 150° C case temperature at the rate of 1 W/°C.
- 3. Derate linearly to 150°C free air temperature at the rate of 24 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = -20 V.

electrical characteristics at 25°C case temperature

	PARAMETER		TEST CONDITIO	NS	MIN	TYP	MAX	UNIT
	Collector-emitter			BD250 BD250A	-45 -60			
V _{(BR)CEO}	breakdown voltage	$I_C = -30 \text{ mA}$	D	BD250B	-80			V
		(see Note 5)		BD250C	-100			
		V _{CE} = -55 V	$V_{BE} = 0$	BD250			-0.7	
1	Collector-emitter	$V_{CE} = -70 \text{ V}$	$V_{BE} = 0$	BD250A			-0.7	mA
ICES	cut-off current	$V_{CE} = -90 V$	$V_{BE} = 0$	BD250B			-0.7	IIIA
		$V_{CE} = -115 \text{ V}$	$V_{BE} = 0$	BD250C			-0.7	
1	Collector cut-off	$V_{CE} = -30 \text{ V}$	I _B = 0	BD250/250A			-1	mA
I _{CEO}	current	$V_{CE} = -60 \text{ V}$	$I_B = 0$	BD250B/250C			-1	ША
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	I _C = 0				-1	mA
	Forward current	V _{CE} = -4 V	I _C = -1.5 A		25			
h _{FE}	transfer ratio	$V_{CE} = -4 V$	$I_{C} = -15 \text{ A}$	(see Notes 5 and 6)	10			
		V _{CE} = -4 V			5			
V _{CE(sat)}	Collector-emitter	I _B = -1.5 A	$I_{C} = -15 \text{ A}$	(see Notes 5 and 6)			-1.8	V
* CE(sat)	saturation voltage	I _B = -5 A	O				-4	
V _{BE}	Base-emitter	V _{CE} = -4 V	$I_{\rm C} = -15 {\rm A}$	(see Notes 5 and 6)			-2	V
- BE	voltage	V _{CE} = -4 V	I _C = -25 A	(555 : 15155 5 1.15 6)			-4	
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -1A	f = 1 kHz	25			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -1 A	f = 1 MHz	3			

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300$ µs, duty cycle $\leq 2\%$.

thermal characteristics

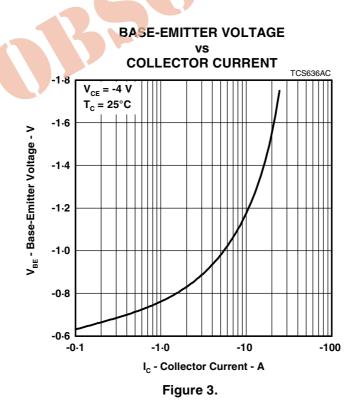
PARAMETER	MIN	TYP	MAX	UNIT
R _{eJC} Junction to case the mal resistance			1	°C/W
R _{0JA} Junction to free air thermal resistance			42	°C/W

resistive-load-switching characteristics at 25°C case temperature

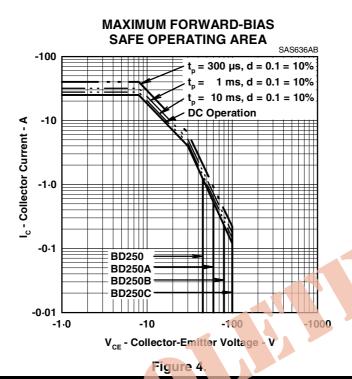
	PARAMETER	TEST CONDITIONS †		MIN	TYP	MAX	UNIT	
to	_n Turn-on time	I _C = -5 A	$I_{B(on)} = -0.5 A$	$I_{B(off)} = 0.5 A$		0.2		μs
to	ff Turn-off time	$V_{BF(off)} = 5 V$	$R_1 = 5 \Omega$	$t_{\rm p} = 20 \ \mu s, \ dc \le 2\%$		0.4		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.


TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN VS COLLECTOR CURRENT TCS636AD Tc = 25°C Tc = 25°C Tc = 300 µs, duty cycle < 2% 100 Ic -100 Ic - Collector Current - A


Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE vs **BASE CURRENT** TCS636AB -10 V_{CE(sat)} - Collector-Emitter Saturation Voltage - V -1.0 -0.1 300 mA -3 A -0.01 -0.01 -0.1 -1.0 -10 -100 I_B - Base Current - A

Figure 2.

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION **CASE TEMPERATURE**

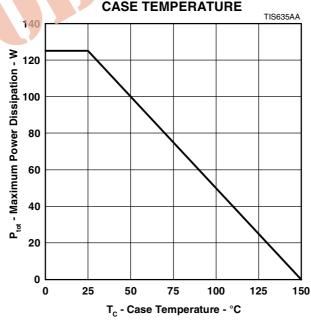


Figure 5.