
BOURNS®

- Designed for Complementary Use with BDX34, BDX34A, BDX34B, BDX34C and BDX34D
- 70 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3V, 3 A

Pin 2 is in electrical contact with the mounting base.

MDTRACA

This series is obsolete and not recommended for new designs.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BDX33		45	
Collector-base voltage (I _E = 0)	BDX33A		60	
	BDX33B	V _{CBO}	80	V
	BDX33C		100	
	BDX33D		120	
	BDX33		45	
Collector-emitter voltage (I _B = 0)	BDX33A		60	
	BDX33B	V_{CEO}	80	V
	BDX33C		100	
	BDX33D		120	
Emitter-base voltage		V _{EBO}	5	V
Continuous collector current		I _C	10	Α
Continuous base current		Ι _Β	0.3	Α
Continuous device dissipation at (or below) 25°C case temperature (see Note 1)		P _{tot}	70	W
Continuous device dissipation at (or below) 25°C free air temperature (see Note	2)	P _{tot}	2	W
Operating free air temperature range		T _J	-65 to +150	°C
Storage temperature range		T _{stg}	-65 to +150	°C
Operating free-air temperature range		T _A	-65 to +150	°C

NOTES: 1. Derate linearly to 150°C case temperature at the rate of 0.56 W/°C.

2. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		TES	T CONDITIONS		MIN	TYP	MAX	UNIT
					BDX33	45			
	Collector-emitter breakdown voltage	I _C = 100 mA I _B = 0		BDX33A	60				
$V_{(BR)CEO}$			I _B = 0	(see Note 3)	BDX33B	80			V
(511)020				,	BDX33C	100			
					BDX33D	120			
		V _{CE} = 30 V	I _B = 0		BDX33			0.5	
		V _{CE} = 30 V	$I_B = 0$		BDX33A			0.5	_
		$V_{CE} = 40 \text{ V}$	$I_B = 0$		BDX33B			0.5	
		$V_{CE} = 50 \text{ V}$	$I_B = 0$		BDX33C			0.5	
	Collector-emitter	V _{CE} = 60 V	$I_B = 0$		BDX33D			0.5	
I _{CEO}	cut-off current	V _{CE} = 30 V	$I_B = 0$	$T_C = 100^{\circ}C$	BDX33			10	mA
		V _{CE} = 30 V	$I_B = 0$	T _C = 100°C	BDX33A			10	
		$V_{CE} = 40 \text{ V}$	$I_B = 0$	T _C = 100°C	BDX33B			10	
		$V_{CE} = 50 \text{ V}$	$I_B = 0$	T _C = 100°C	BDX33C			10	
		V _{CE} = 60 V	$I_B = 0$	T _C = 100°C	BDX33D			10	
		V _{CB} = 45 V	I _E = 0		BDX33			1	
	Collector cut-off current	V _{CB} = 60 V	I _E = 0		BDX33A			1	
		V _{CB} = 80 V	I _E = 0		BDX33B			1	
		V _{CB} = 100 V	I _E = 0		BDX33C			1	
_		V _{CB} = 120 V	I _E = 0		BDX33D			1	mA
I _{CBO}		V _{CB} = 45 V	I _E = 0	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33			5	
		V _{CB} = 60 V	I _E = 0	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33A			5	
		V _{CB} = 80 V	I _E = 0	$T_{C} = 100^{\circ}C$	BDX33B			5	
		V _{CB} = 100 V	I _E = 0	T _C = 100°C	BDX33C			5	
		V _{CB} = 120 V	I _E = 0	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33D			5	
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	$I_C = 0$					10	mA
	Forward current transfer ratio	V _{CE} = 3 V	I _C = 4 A		BDX33	750			
		V _{CE} = 3 V	$I_C = 4 A$		BDX33A	750			
h_{FE}		V _{CE} = 3 V	$I_C = 3 A$	(see Notes 3 and 4)	BDX33B	750			
		V _{CE} = 3 V	$I_C = 3 A$		BDX33C	750			
		V _{CE} = 3 V	$I_C = 3 A$		BDX33D	750			
	Base-emitter voltage	V _{CE} = 3 V	I _C = 4 A		BDX33			2.5	
		V _{CE} = 3 V	$I_C = 4 A$		BDX33A			2.5	
$V_{BE(on)}$		V _{CE} = 3 V	$I_C = 3 A$	(see Notes 3 and 4)	BDX33B			2.5	V
		V _{CE} = 3 V	$I_C = 3 A$		BDX33C			2.5	
		V _{CE} = 3 V	$I_C = 3 A$		BDX33D			2.5	
	Collector-emitter saturation voltage	$I_B = 8 \text{ mA}$	I _C = 4 A		BDX33			2.5	
		$I_B = 8 \text{ mA}$	$I_C = 4 A$		BDX33A			2.5	
$V_{CE(sat)}$		$I_B = 6 \text{ mA}$	$I_C = 3 A$	(see Notes 3 and 4)	BDX33B			2.5	V
. (,		$I_B = 6 \text{ mA}$	$I_C = 3 A$		BDX33C			2.5	
		$I_B = 6 \text{ mA}$	$I_C = 3 A$		BDX33D			2.5	
V _{EC}	Parallel diode forward voltage	I _E = 8 A	I _B = 0					4	V

NOTES: 3. These parameters must be measured using pulse techniques, $t_p = 300 \mu s$, duty cycle $\leq 2\%$.

^{4.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

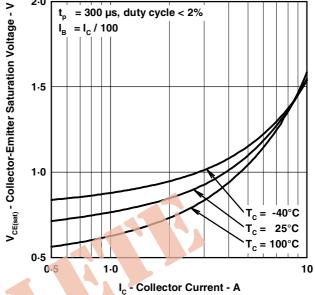
thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.78	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †				TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = 3 A	$I_{B(on)} = 12 \text{ mA}$	$I_{B(off)} = -12 \text{ mA}$		1		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.5 \text{ V}$	$R_L = 10 \Omega$	t_p = 20 μ s, dc \leq 2%		5		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.



TCS130AH

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN vs **COLLECTOR CURRENT** TCS130AF 50000 -40°C = 25°C = 100°C h_{FE} - Typical DC Current Gain 10000 1000 3 V = 300 µs, duty cycle < 2% 100 0.5 1.0 10 I_c - Collector Current - A

2.0 = 300 μs, duty cycle < 2% $I_B = I_C / 100$

COLLECTOR-EMITTER SATURATION VOLTAGE

COLLECTOR CURRENT

Figure 1.

Figure 2.

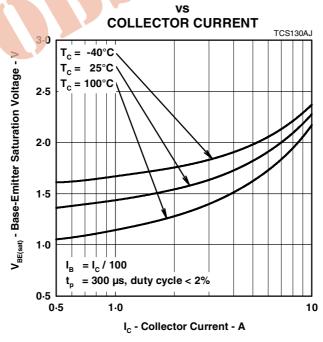


Figure 3.

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

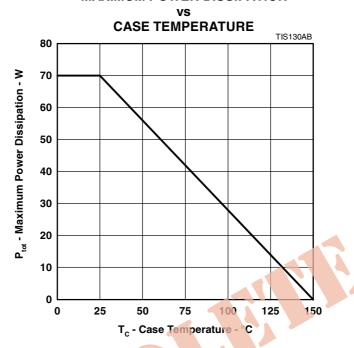


Figure 4.